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ABSTRACT%■

The analysis leading to the optimum transfer function for an 
active suspension excited by a random guideway input is briefly reviewed 
and a design chart is presented. A parameter sensitivity study of the 
stability is performed and shows excellent system stability. The 
wheel-guideway contact problem is considered and a design chart is 
developed to check wheel-guideway relative displacement (wheel hop) 
for active suspensions. The equations for the rms force required 
to prevent wheel hop are derived and a design chart showing the 
minimum rms vehicle acceleration which can be obtained while applying 
this force is presented. The improved vibration isolation 
characteristics of active suspensions using preview control are 
investigated for infinite and finite preview distances. It is found 
that for a simple model infinite preview can reduce the rms vehicle 
acceleration by a factor of 16 and that a preview time of .4-.5 seconds 
is sufficient to provide almost the same improvement as infinite preview. 
It is concluded that active suspension development for vehicle heave, 
roll and pitch control, particularly for use with preview control, is 
warranted.
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NOMENCLATURE

a k / (k + k ) LS V s
A Roadway spectral density m
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n

p
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D Coefficient (Appendix A)
r

E Coefficient (Appendix A)
s

f Sprung mass natural frequency
L

(cos/2tt) T

f Unsprung mass natural frequencyV
(uj /2it)u W
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F F/8TT2aMv4vf 3u w
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h Suspension clearance space x,X

H Transfer function Xs
I Coefficient (Appendix A) XV

j /-I y,Y

k Spring rate ys

koi Unsprung mass spring rate z,Z

k12 Sprung mass spring rate a

ks Gain of preview controller 3

kV Preview suspension spring rate Y
K Feedback gain Y(t

Preview distance 

Mass of unsprung mass 

Mass of sprung mass 

Constant

Penalty function 

Mass ratio m/M 

Laplace operator 

Time

Preview time 

Velocity

Synthesized suspension transfer 
function

Preview synthesized suspension 
transfer function

Synthesized transfer function 
for minimum rms suspension force

Roadway elevation; constant

Roadway elevation at preview sensor

Roadway elevation at vehicle

Sprung mass position; constant

Response of y to a step in x

Unsprung mass position

Clearance factor 
2pwu

W / (J js u
) Inverse transform of T(s)/A (s)
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I. INTRODUCTION

The present report represents an extension of the work 

reported in References 1&2. The procedure and results of that work are 

very briefly reviewed below to provide background and easy reference 

for the current analyses.
*It has been found [1,2]that the profile spectrum of 

representative guldeways (runways, highways, etc.) can be conveniently 

represented by an equation of the form

<|> (0) = k,Q2 °r 4>t(u) = * 2 “ ̂ 2 (1)W S

(nomenclature on page iv). This guideway input acts on a

vehicle suspension as shown in Figure 1, where the excursibn of the 

suspension is limited by practical considerations. Sufficient 

clearance must be provided to allow for load variations as well as 

dynamic excursions of the unsprung mass as shown in Figure 2. Since 

we are working with random inputs bottoming of the suspension will 

occur occasionally (unless prevented by non-linear characteristics near 

the excursion limits) but can be made infrequent by allowing 

clearance space needed for dynamic excursions equal to several times 

(by a factor of a) the rms relative dynamic displacement. Thus

h/2 - F/2k - a5 (2)rms

Since there are indications that the roadway elevation distribution is 

Gaussian, the parameter a should be about 3 to keep the sprung mass 

from bottoming at least 99.9% of the time.

[ ] indicate references at end of report
-1-
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The clearance required to provide certain vibration Isolation 

characteristics or, conversely,the vibration Isolation which can 

be achieved with a given suspension excursion clearance is thus of 

prime importance. To optimize the vibration-clearance trade-off, 

a penalty or cost function, P, is formed which is a linear combination 

of the rms acceleration, y ^ ,  and the clearance space h

pyrms + h pyrms 2aS +rms F/k (3)

The parameters of a given suspension transfer function and 

the transfer function for an unknown suspension which will minimize 

this penalty function were then derived using variational calculus 

(ala Wiener filter theory).

The optimum transfer function which minimizes the penalty 

function*was found to be

u) 2cJ>2 [ (B + 1)<J>2 + C<t> + 1]
W(<f>) = ---------f s---------------- =---------------------------------( 4 )

4> + 2 S  D<J> + + 2 S  I<P + 1

where the parameters B, C, D and E are defined in Appendix A .

The expression for the rms acceleration y ^ , non-dimensionalized 

by the roadway roughness A, vehicle speed V, and unsprung mass natural 

frequency in Hz, fu> was then found to be

rms

4tt l/kVt 2u

1
2irj

i°o
m i

$
J  — -1 O 0

(5)



or with the help of tabulated algebraic expressions for the 

above Integral, the acceleration becomes

rms

4ir2/AVf - 3 u

(B + 1)2 (2/BEI - D) + (C2 - 2B - 2)2/g~ I + 2S&V
83 (/3DEI - D2 - /3I2)

1/2

(6)

where B, C, D, E, and I are evaluated In Appendix A. Similarly, 

the clearance space h 2aS  ̂ g is given by

/3- (B + !)(! + l/r) 2D + D - C(1 + l/r)12/3(DE - I)
1 1/2

8(3 DEI -/3D2 - 3I2)
(7)

The vibration-clearance space trade-off for the optimum synthesized 

suspension corresponding to a given mass ratio, r,is then found as 

follows:

a) Choose a value of 3, compute B, C, D, E, and I (see Appendix A) 

and then find the rms acceleration and the clearance space 

from the above two equations;b)Increment 3 and repeat the whole 

procedure. The points on a vibration-clearance plot thus found define 

a curve which is a lower bound to the performance of suspensions which are 

linear, do not use preview information, and apply equal forces to the 

unsprung and sprung masses. This optimum trade-off curve is shown for 

r = 0.1 in a design chart (Figure 3) along with curves for passive, 

fixed configuration systems.

This design chart shows the sprung mass rms acceleration 

which can be obtained with a given clearance space using passive

-5-
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systems, automatic height control and synthesized active suspensions 

without preview information.

These curves asstime that the wheel is restrained to 

follow the guideway profile (no wheel hop, positive and negative 

forces between guideway and wheel are permissible). The present 

report extends the analysis to include the wheel-guideway contact 

problem and additional design charts are generated to be used in 

conjunction with Figure 3 to check for wheel hop.

The analysis is also extended to investigate the beneficial 

effects of finite and infinite preview control in which case the 

active suspension can anticipate guideway disturbance inputs.



II. OPTIMUM SYNTHESIZED SUSPENSION

A. Mechanization of Synthesized Suspension

Uurious control system configurations have transfer 

functions which can be made to match the transfer function of 

Equation (4) which has been mathematically synthesized. The procedure 

followed here is to consider variables which are easily measured and 

filtered to generate a control force command signal (see Figure 4). 

Accelerometers may be used to measure unsprung and sprung mass 

accelerations. Each signal may be filtered by a function of the form 

(K^ + K^/s) and then summed to form a command signal. Amplifier and 

servomechanism dynamics need to be considered in a specific design 

study but are neglected in this preliminary treatment. In addition, 

forces proportional to unsprung mass-sprung mass relative displacement 

and velocity may be generated either passively by springs and shock 

absorbers or actively by a variety of transducers, amplifiers, and 

actuators. Thus the control force is assumed to be of the form

F = (cs + k-_)(z - y) - K s^y - K sy + K s^z + K sz (8)s 12 3 sa 3 sv 3 ua uv

where the nomenclature is defined in Figure 4. The transfer function 

relating sprung mass acceleration to roadway elevation becomes

-8-
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iiffcl
x(<J>)

2 , 2 rrKua .2 f2C . L V ,  . . ,
“ u ' ^5 ♦ + + “ 9---^  + ^Y m ' y mu_______ ________ ___  u

‘2 ( l  +  ^  +  % > * ' ’ +  ~ J l  *  +  - T ® - ' * 3M O  Y .A., A' Y Mlo Y rawu u

+ (Y-2 + - f 5- + 1 + l/r)<f>2 + <&■ + )(J> + 1
Y M Y MWu

(9 )

where y - k^M/k^m; £ = c/ 2  A ^ M  .

The block diagram for the general active suspension system described by 

Equation (9) is shown in Figure 5.

The active suspension system can be made optimum by 

equating coefficients of like power of <}> in the numerators and in the 

denominators of Equations (4) and (9). There is some redundancy of 

parameters. For example, Kyv can be zero and y or Kga chosen 

arbitrarily. If y is arbitrary, the spring stiffness, k,may be made as 

large as hardware limitations permit in order to minimize the effects 

of externally applied vehicle forces. In order to realize optimum 

suspension performance, it is essential that the actuator force depends 

in part on unsprung mass acceleration.

The non-dimensional equations relating the

parameters used in the active suspension described by Equation (9) to the

coefficients of p in the optimum synthesized transfer function are

(for K = 0 ) : uv

Y
1 + K /M  sa________
S  - m  + l/r)

1/2



Figure 5 . Active Suspension System Block Diagram



Y2(B + l)/r
Kua
m

Ksv
Muu

I S  Dy2

(10)

Since it is desirable to build as simple a system as possible, one can

choose K equal to zero to minimize the number of feedback variables, sa
The parameters y, K^/m, £, and are computed from the above

equations and plotted in Figure 6 .

In a rather lengthy theoretical synthesis study such

as this, one often wonders if the results (the design chart, Figure 3, and

optimum parameter chart, Figure 6) are valid. To confirm the

above results, a parameter search optimization was performed. The

rms acceleration.y .and relative displacement, , 6 ,were expressed • rms > rms
in terms of the system parameters y, K^/m, £, and K ^ / M oĵ  and 

substituted into the expression for the penalty function P [Equation

(3) with F ■ 0]. P was then minimized for several values of the 

weighting factor p by a hill climbing type of digital computer 

parameter search program (see Appendix C) . The results 

of this independent optimization procedure confirm those found by the 

synthesis method.

B. Sensitivity Analysis

In addition to determining the optimum parameter values

-11-



Figure 6 . Optimum Active System Parameter Values
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from Figure 6 , It Is desirable to examine the roots -of the synthesized 

system characteristic equation. The roots Indicate system resonant 

frequencies and damping ratios that should be known before any complete 

system design Is undertaken. In practice,It Is not generally possible 

to build a system with the precise parameter values specified by an 

Initial design study. Consequently, one should be aware of the 

sensitivity of system performance to deviations In values of parameters 

from the optimum. It Is especially important to determine the effects 

of parameter variations on stability.

Each of the roots of the characteristic equation for the 

optimum synthesized system depends only on the weighting factor 8 .

One may therefore plot the poles of the optimum transfer function 

(Equation 9) as a function of 8 . The root locus shown In Figure 7 was 

found by computing the coefficients of the synthesized system characteristic 

equation and extracting the roots with the aid of a digital computer 

program. It should be emphasized that this root locus is not the 

conventional type where only one gain Is varied. Here all gains are 

varied according to the above parameter computation scheme. It may be 

seen that at very low and very large values of B, corresponding to 

high and low acceleration levels, there will be very lightly damped 

system poles. These poles might be a problem if they occur at 

frequencies near other structural resonant frequencies not accounted for 

in our preliminary investigation. In addition, one might think that a 

small change in parameter values from the optimum could shift these 

poles into the right-half plane, making the system unstable.

A sensitivity analysis was performed to determine the

-13-
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percentage by which parameters (the mass ratio*r,and those specified by 

Figure 6 ) would have to be varied in order to make the system unstable. 

First* to find destabilizing directions, each parameter was incremented 

plus and minus 1 0 % while the other parameters were held fixed at their 

optimum values. This was done both for large (*10^) and small ("1.0) 

values of 3« Once the destabilizing directions were found by this 

method the roots of "worst case" combinations were found for several 

percentage parameter variations. The results were somewhat surprising 

in two respects. First, the fractional distance a pole shifted toward 

the right half plane is approximately the same at any of the three 

points in Figure 7 where the roots approach the imaginary axis. Thus,, 

there does not seem to be any greater tendency for poles near the 

right half plane to become unstable than for poles further from the 

imaginary axis. Secondly, it was found that every parameter could be 

varied as much as 50% in the destabilizing direction without 

causing Instability. One would, therefore, not expect severe 

stability problems in using the optimum parameters of Figure 6 to 

mechanize vehicle systems that reasonably fit the model chosen for this 

Investigation (Figure 4).

-15-



III. WHEEL-GUIDEWAY INTERACTION

The emphasis, so far, has been on active and passive

suspension systems which are optimum only with respect to the vibration-

clearance trade-off discussed previously. Whether these optimum systems

represent satisfactory designs depends on other criteria not accounted

for in the original penalty or cost function. One of the more important

of the se is the requirement that wheels maintain nearly continuous

contact with the guideway if they are not constrained to follow the

profile by the guideway, i.e.,conventional wheels. The relationships

between wheel-guideway dynamics and other dynamic and economic factors

of interest such as maneuverability, traction, and wear are not well

defined. However, it is certain that each of these qualities will

be adversely affected by any appreciable loss of wheel-ground contact.

By restricting the rras dynamic deflection 6 of the wheels withw , rras
respect to the guideway to 1 /a of the static deflection 6 of thew o
unsprung mass due to vehicle weight, wheel roadway contact may be

maintained for an acceptable proportion of time. For a =3, for example,w
wheels should contact the road for 99.9% of the time since roadway 

elevation probability density functions tend to be gaussian.

In this section two aspects of wheel-roadway contact 

will be examined. First, a method and appropriate chart will be 

developed for determining the degree to which the wheels of suspension 

systems described by the vibration-clearance design chart (Figure 3) 

hold the road. Secondly, the minimum rms force required to hold the 

wheels of a moving vehicle on the road will be determined. Since this 

force is generally applied to the sprung mass (as contrasted to a

-16-



vibration absorber, £or example) and since it Increases with velocity, 

one will be able to determine upper speed limits of a vehicle for any 

given rms sprung mass vibration level.

A. Design Chart Constraint

One may test whether or not optimum suspensions are

satisfactory in regard to unsprung mass excursions relative to the

guideway by first computing the static deflection of the unsprung

mass, 6 , and then the rms dynamic deflections, <S for anyo w,rms
particular design. If 6 is greater than 6 by a factor of threeo w,rms
or more, for example, it can be assumed that a wheeled vehicle would

possess adequate wheel-guideway contact. On the other hand, if

is not three or more times larger than 6 , then 6 shouldw,rms w,rms
either be Included in the penalty function and a new optimization should 

be performed or the optimum system should be modified to have good, 

though not optimum, vibration, clearance space, and wheel-guideway 

characteristics.

The static deflection of the unsprung mass is easily 

computed as the weight of both sprung and unsprung masses divided by the 

stiffness k^ .  Thus

fa + M)g 

k01 (ID

where g is the gravitational constant. For a mass ratio m/M of 0.1 the 

static deflection in feet is

6 - 9.0/fo u (12)

-17-



where f is the unsprung mass natural frequency In Hz.

The rms dynamic excursion is found from the transfer,

function relating guideway elevation to 6 and the guideway mean squarew
elevation spectral density. The transfer function for 6^, derived 

for the general active suspension system (Figure 4), is

~ K K K
c * (1 + "jp + -Jf)<f> + [2CY(1 + 1/r) + + Y (1 + i/r)
_ W  /xs _  _____ ________________________________________________________________ U___________________________
x W  “ K K K K .. sa . uav ,4 .  ̂ . sv . uv, ,3

(1 + I T  + ~T>* + l2«<1 + 1/r) + 5 T  + 5 T '*u u

? K' K
+ [yz(l + 1 /r) + 1  + + (2 ?y + ̂ )<t> + Y

u
(13)

From the above and Equation (1) the wheel-guideway rms dynamic 

excursion is computed for the optimum systems specified by Figure 3.

The results are shown in Figure 8 as a function of the non-dimensionalized 

design clearance.

The shape of the curves in Figure 8 may be explained by

physical reasoning. The suspensions corresponding to the left-hand

side of Figure 8 are designed for small clearance and are consequently

quite stiff. Thus, as clearance space becomes smaller, the sprung and

unsprung masses become more nearly locked together as one unit atop the

undamped spring represented by k^. This system approaches a single-

degree-of-freedom lightly damped oscillator which exhibits considerable

relative excursions when excited by a random input. At the right-hand

side of Figure 8 , 6 again increases with distance from the centralw,rms

-18-
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minimum. In this case, however, systems are designed for very low 

acceleration levels, hence small force transmissibillty. As the 

suspension forces become lower, the unsprung mass becomes increasingly 

isolated from the sprung mass and behaves like a lightly damped 

resonant oscillator.

The procedure for testing whether any particular optimum

system satisfies the unsprung mass dynamic excursion constraint is now

straightforward. First, the static deflection is computed from

Equation (11). Then the value of 6 /f /AV (hence 6 ), whichw , rms u w , rms
corresponds to the same trade-off curve and clearance space used in the

optimum suspension design chart, is found from Figure 8 . Finally

6 is compared with 5 to determine if unsprung mass motion isw,rms o r e>

excessive.

B. Minimum RMS Sprung Mass Force

One of the fundamental speed limitations to vehicles 

using conventional, extremely lightly damped wheels arises from the 

time varying force required to maintain nearly continuous wheel-road 

contact. If there were no external forces applied to a wheel, modeled 

as a single-degree-of-freedom undamped oscillator excited by random roadway 

elevations, wheel-roadway excursions would be so large that the wheel would 

bounce a great deal. Since the time varying forces that must be applied 

to the wheel to keep it on the ground are also applied to the sprung mass 

(for suspensions that do not incorporate devices such as vibration 

absorbers), it seems appropriate to attempt to find the minimum rms 

force, hence rms sprung mass acceleration, required to maintain wheel 

road contact.

-20-



The procedure used here to find the lowest value of m s  

force needed to provide adequate wheel-guideway contact consists mainly 

of synthesizing the transfer function relating guideway elevation to 

suspension force which minimizes the weighted sum of the rms suspension 

force applied to the wheel plus the rms wheel-guideway dynamic excursion. 

Thus,there is a trade-off between suspension force and wheel-guideway 

excursion in much the same way as there is a trade-off between sprung 

mass acceleration and sprung mass-unsprung mass relative excursion as 

discussed previously. By letting the rms excursion for this optimum 

wheel-guideway system be as large as is compatible with road holding 

requirements (l/ciw of the static displacement) the force is minimal.

We will, therefore, find the characteristics of the linear system 

that can hold the wheels of a vehicle on the road with minimum sprung 

mass vibration without regard to sprung mass-unsprung mass clearance 

space.

The equation of motion for an unsprung mass, m,excited

by guideway elevation variations x and a suspension force F iss

F + km  (x - z) = mz (1A)

where is the wheel stiffness and z is the wheel displacement.

Noting that the wheel-guideway relative excursion 6w is defined by

6 = x - z the solution for 6 in terms of F and wheel parameters isw w s

6 =w _ _JL
<f>2 + 1

x - Fs/koi
<|>2 + 1

(15)

By analogy to the block diagram, Figure 5 in Reference 3 with Fs/kQ^»

-21-



6 and the synthesized wheel-roadway transfer function W (s) replacing
w W

y, 6 , and W(s), respectively, we find that

_ 1 ____
<p2  + 1

H 2 (<J>)
(f)2 + 1

(16)

From Equations (1), (16) and (11) and (12) in Reference 3, the 

expressions for r(d>) and A(d>) are

r(<t>)
2ttAV/u 2 ______u

2 2(<t> +  IV

A((j>) - 27TAV/0) 2 u
d>4 + 2d>2 + l + l/p 
<t>2(<t>2 + l) 2

(17)

The numerator of the bracketed term of the above equation may be 

factored in two stages. First

<J>4 + 2<t>2 + 1 + l/p - (<f>2 + 1 + j//pj(<t>2 + 1 - j//p) (18)

Then the roots of each of the above bracket terms are found so that A(<j>) 

is given by

A(4» = -27TPAV/0) 2
u  <t>2(<fi2 + IV (19)

where

b - ( 1  + l/p) 1 / 4  sin [j tan 1  (1 /*7p) ]
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(20)

Upon factoring A(<J>) into terms, each of which contains roots on 

opposite sides of the imaginary axis, we have

c - (1 + 1/p)1^  cos [j tan 1 (l//p)]

»  X4> + b + cj)(4> + b -  c1)

<K<J)2 + 1 )

2ttAV/o) 2(<|) -  b + cj)(<f> -  b -  c j)
A~(<|>)  ------------------y — ^ ----------------------------------:-------- —

<K<J> + 1 ) (2 1 )

Consequently, the expression for F(<t>)/A (<j>) is

m i __________________i__________________
A (<j>) <j>(<()2 + 1 ) (tf» - b + cj)(<() - b - cj)

If we find that part of the partial fraction expansion of T(<|))/A (<f>)f 

which has only poles in the left-half plane,and divide by A + (<j>), the 

optimum synthesized transfer function is given by

w w  - !)♦ jLjbl
W (|)2 + 2b<() + A  + l/p ' (23)

There are now essentially three steps to find the minimum rms force,

Fs’rms ’ re<lu^re<̂  to the wheels of a moving vehicle on the ground:
a) The rms wheel-roadway dynamic excursion 6 is found; b)w, rms
by equating 6 to 1 /a of the static wheel deflection 6 , anJ ^ ° w , rms w o
expression containing the weighting factor p and various system
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parameters is derived. The value of p that satisfies this equation

corresponds to the minimum rms suspension force; c) the

last step is to find the rms force in terms of p and solve for Fr K s,rms
From Equations (1), (15), and (23) and noting that

F /k_, = W (s)X(s), the expression for 6 iss 0 1 w w,rms

6w,rms
AV (✓! + l/o + 4b2)
f 4b /L“+ 1/p u ^

1/2
(24)

By equating aw times the above equation to the expression for the 

static wheel deflection [Equation (11)], one obtains

AVf 3 a 2 (2tt)4(/1 + 1/p + 4b2)
--------- 7 - 7  — ----------------------- => 1 (25)
(1 + l/r)2 g2 4b /I + 1/p

In a manner completely similar to the derivation of Equation (24), the

expression for F divided by the sprung plus unsprung mass weights y m s
(m + M)g is found to be

Fs.rms 
(m + M)g

AVfu3 (2tt)4[(/1 + 1/p - 1)2A  + 1/p + 4b2] 1/2
(1 + l/r)2g2 4b/I + 1/p

(26)

We can compute and plot F /(m + M)g as a function of the parameters, rms
3 2AVf^ /g for several values of r by using an iterative technique to 

solve Equation (25) for p and then by solving Equation (26) for F /
S  y  1  U l S

(m + M)g. The results of this analysis for aw = 3, illustrated in

Figure 9, show how F /(m + M)g, hence the minimum sprung mass vibration,s, rms
increases with roadway roughness, vehicle speed, and unsprung mass natural
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g2
Figure 9. Minimum RMS Force Required to Maintain Wheel - Roadway Contact , 99.9% of the Time
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frequency. The benefits of light-weight unsprung masses are also 
apparent.

The curves in Figure 9 represent ultimate speed 
limitations because of sprung mass vibration only for an unsprung mass 
modeled as a linear single-degree-of-freedom undamped system and for a 
linear suspension which applies equal forces to both unsprung and sprung 
masses. Damping, present in all real wheels, tends to make the results 
illustrated in Figure 9 conservative. Nevertheless, several steps may 
be taken to reduce the suspension force required to maintain adequate 
wheel-road contact if vehicle acceleration is excessive. First, since 
the rms suspension force is approximately proportional to the cube of the 
unsprung mass natural frequency, fy, a considerable sprung mass 
vibration reduction may be brought about by a moderate decrease in f̂ . 
Secondly, a vibration absorber may be used to reduce the forces applied 
to the sprung mass. Finally, for vehicles in a tunnel, an overhead 
suspension system, which might reduce vehicle vibration, could also be 
used to preload the main suspension thereby permitting large wheel-road 
excursion (hence small rms force) without loss of wheel-road contact.
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The accuracy with which a driver can keep his vehicle at 
the center of a lane for a given speed depends, among other things, on 
his visibility of the roadway ahead of the car. Certainly a measure 
of tracking error (i.e., deviation of the vehicle from the center of 
the lane) would decrease monotonically with increasing visibility 
but would reach a finite value even for infinite visibility. Thusj 
although information regarding the roadway path ahead of a vehicle 
is significant in controlling an automobile, for long distances such 
data apparently provide diminishing returns as the preview distance 
increases.

There is a strong similarity between the function of a 
human operator to steer a vehicle along a winding road and the function 
of a suspension to guide a vehicle over the vertical part of a roadway 
profile. In this section, some of the fundamental limitations and

4trade-offs pertaining to vehicle suspensions that are capable of 
utilizing data on the roadway profile ahead of a vehicle are 
investigated. First, a vehicle model (different from that used 
previously) and optimum synthesized suspension that does not use 
preview control will be established. In order to find ultimate 
performance capabilities, the optimum system transfer function and 
corresponding accelerations and relative displacements will be found 
for a system that has infinite roadway preview. Finite preview 
suspension systems will be studied to determine how vibration and 
clearance space improvements depend on preview distance. Finally, 
mechanization of preview suspension systems will be considered.

IV. OPTIMUM LINEAR PREVIEW CONTROL'
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The vehicle model used for this study is a single-degree- 
of-freedom rigid mass connected to the roadway by massless suspension 
elements. Unfortunately, the mathematics in this section are sufficiently 
lengthy to justify a preliminary study of only the simplest of systems.
The model is, however, broadly representative of the fundamental suspension 
problem of guiding a vehicle over a road with a minimum of vibration 
and clearance space. Schematically, Figure 10 shows both the 
vehicle-suspension-guideway configuration and the block diagram relating 
roadway elevation to vehicle acceleration and to vehicle-roadway 
clearance space. The roadway elevation at the preview sensor, xg, 
is viewed as the input to the synthesized suspension,W^(s). The 
vehicle acceleration y is integrated tx̂ ice to give displacement 
y which is subtracted from the roadxjay elevation under the vehicle 
to give vehicle-roadway relative excursion 6̂ . The roadway elevation 
under a moving vehicle x^ is the same as that at the sensor position 
but delayed by a time T equal to the distance L of the sensor in 
front of the vehicle divided by the vehicle velocity V.

A. Zero Preview

The transfer function and vibration clearance trade-off 
curve for the case of zero preview (L = 0) are useful bases against 
which to compare similar results for finite and infinite preview 
suspensions. The expressions for the synthesizing functions T(s) and 
A(s) are derived by noting from Figure 12 [Reference 1] and Figure 10b 
that Ĥ (s) = 1/s2 and ^(s) = 1.
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(a)

(b)

Figure 10. Preview Suspension System a) Schematic b) Block Diagram



Thus

r ( s ) 2 ttAV '
4s

(27)

A(s) = 2ttAV (28)b 
S

A(s) may be factored into parts each of which contains only poles 
and zeroes in the right and left half planes as follows:

A (s) 2nAV . 1/4 
—  [p S s k  (1 + j)][p1/4s

n
1  (i - j)] 

/ 2
(29)

A+(s) = [pl M S + - (1 + j)][p1/4S + -  (1 - j)] 
SJ /Z /2

(30)

When r ( s ) / A  ( s )  is expanded in a sequence of partial fractions, the only
term with poles in the left half plane is 1/s. Consequently,
[P(s)/A (s)]+ = 1/s and, from Equations (24a) [Ref. 1] and (30),
the synthesized suspension transfer function W (s) isP

WP(s)L=0
2s

+ /2 p1//4s + 1
(31)

The rms vehicle acceleration y and relative excursion 6 arerms p,rms
found from Equations (1) and (31), Figure 10, and the tables 
corresponding to Equation (15) [Ref. 3]. Thus

..2
y

3/4
rms
2 ttAV L=0

£Z
4 (32)

x2o p,rms 
2-FTAVp1 4̂ L=0

3/2
4 (33)

The weighting constant p may be eliminated from Equations (32) and (33)
I
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to give the equation expressing the optimum zero preview vibration- 
clearance trade-off

yrms 
/2ttAV

B. Infinite Preview

No system is likely to need-or would be capable of 
utilizing-profile information on the roadway very far (e.g., a one-hour 
travel time) in advance of the vehicle. However, the transfer function 
and trade-off curve for an infinite preview system are much easier to 
compute than those for a finite preview suspension and, in addition to 
giving ultimate performance limitations, present some interesting 
results not obtainable from finite preview considerations.. Therefore, 
we may solve the Wienet-Hopf integral equation without regard to 
physical realizability restrictions (i.e., allow infinite preview).
The Wiener-Hopf equation may be given by (8).

rms
/2ttAV

3/3 (34)
L=0

r(T)
*00

W (t)A(x - t)dt P
i .00

(35)

“STMultiplying each side of Equation (35) by e and integrating over t  

gives

r(T)e_S&T
Loo

-S T  , e dT W (t)A(x P - t)dt
(36)

or
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f  00f 00
r(T)e STdx

— CO

r oo
W (t)e stdt P

* —CO

A(t - t)e s(T
.

—0 0

- 1 )dT

(37)

Thus

r(s) = W (s)A(s) (38)

From Equations (11), (12) [Ref. 3], and (38%, the expression for the 
optimum suspension transfer function for infinite preview W^(s)^ _ ^ is

H.(-s)H„(s)
W Cs) = —=---- ------ -;L-» H1(s)H1(-s) + p (39)

The very remarkable feature of Equation (39) is that Wp(s)L_oo is
independent of the input. Consequently, one might suspect that a
finite preview suspension system with characteristics similar to
Equation (39) is likely to perform very well even for input signals
with quite different statistics from those for which the system was
synthesized. Before discussing finite preview control, let us find
the vibration-clearance trade-off corresponding to Equation (39).

Since Equation (39) was derived by relaxing physical
2realizability constraints, H^(s) = 1/s and ^(s) = 1, thus

W (s)T p L™00 4ps + 1
(40)

By noting that Y(s) = W (s) X(s) the expression for the rms valuep

of y is found from Equations (1), (15) [Ref. 3], and (40) as
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-.2 -.3/4y  ^  prms___
2irAV 2uj

L=°°
Jl

( A d 2
(41)

. , .1 /4where \jj = p s
Equation (41) may be evaluated from Appendix B for x = 0 and 
n = 2. Thus

-2 3/4
y  ^ C Prms
2ttAV

/ 2
16 (42)

L=°°

Similarly,the ms relative excursion 6 found from Equations (1),p, ms
(40) and 6 (s) = (1 - W (s)/s2)X(s) is P P

- 6 2p,rms. 1

2ttAVp 1 / 4
■ “ 2-rrj

L=oo -

.6

2 2 + D
dijj (43)

Equation (43) may also be evaluated from Appendix B for x ■ 0 
and n = 6 as

“  2
6 p,ms 
2irAVp1/4

When p is eliminated from Equations (42) and (44), the vibration- 
clearance trade-off is described by

3/2
16

L=«>
(44)

V s
/ZirAV

6p,rms
/2nAV

3

L=oo

3/3
128 (45)

C o n s e q u e n t ly , from  th e  above and from  E q u a t io n  (3 4 ) th e  r e l a t i o n

betw een v i b r a t i o n  and c le a r a n c e  f o r  i n f i n i t e  p r e v ie w  a s  com pared w it h
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zero preview for a roadway spectrum proportional to l/w2 is

( y 6 ) Trms p, rms L=°°
(" 6  ̂ )yrms p,rms',L=0

1 _
16 (46)

Thus, infinite preview provides a remarkable improvement over zero 
preview suspensions. Now that the potential of preview suspensions has 
been demonstrated, let us consider how suspension system improvement 
depends on the distance,!,,ahead of the vehicle that the roadway is 
sensed.

C. Finite Preview

The method for synthesizing the optimum suspension 
transfer function for the case when a vehicle can sense the preceding 
roadway for a finite distance is similar to the steps taken for the 
zero preview situation. However, the delay shown in Figure 10b requires 
us to use a more rigorous and lengthy treatment. Until now we have 
merely divided double poles on the imaginary axis evenly into A (s) 
and A+(s) when factoring A(s). Here, however, it is necessary to first 
shift any poles on the imaginary axis into the left or right half 
plane by very small amounts, and £2 an  ̂then find limiting 
function values as and approach zero. Thus

*t (s) AV
(s + e^ C - s + (47)

H^s) 1s ■ ■ - 
(s + e2 ) 2

(48)

H,(s)

HCO1<11II (49)
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From the above and Equations (11) and (12)[Ref. 3] the synthesizing 
functions r ( s )  and A(s) are ,

T(s)

A(s)

■—sT:2-rrAVe ________
(-s + e2)2(s + e^- s  +
2irAV(ps4 - 2e2ps2 + pe24 + 1)
(s + e2)2(s + e1)(-s +'e2)2(-s +

(50)

(51)

For very small t̂ ie four roots of the numerator of Equation (51) lie
well off the imaginary axis. For convenience then, let us

4approximate this numerator by 2"nAV(ps + 1). Thus, Equation (51) 
factors as follows:

A"(s)
2irAV[p1/4s - -  (1 + j)][p1/4s - k (l - j)]
„ _____  f t

(-s + e2)2(-s +
(52)

A+(s)
[P1/4s + 1 (1 + j)][p1/4s + - (1 - j)]

ft fl

(s + e2)2(s + (53)

Dividing Equation (50) by Equation (52) gives

K s i _
A"(s)

-sT__________ e___________________________________
(s + e )[p1/4s - - (1 + j)][p1/4s - -(1 - j)]

1  v ?  n
(54)

The inverse Fourier transform of F(s)/A (s) is a time 
function y(t) which generally has non-zero values for plus and minus t.

-35-



The function [T(s)/A (s)]+ is the Fourier transform of y(t) for t > 0. 
Thus far it has been possible to find [T(s)/A (s)]+ by expressing 
r(s)/A (s) in a partial fraction expansion and retaining only terms 
with poles in the left half plane. Since T(s)/A (s) in Equation (5/*) 
is a transcendental function, [T(s)/A (s)]+ is evaluated first by 
finding y(t) and then by taking the Laplace transform of y(t) which is 
identical in form to the Fourier transform of y(t) for t > 0. Thus

y(t)
Jc

2irj
st r(s)

A"(s)
ds

From Equations (54) and (55)

(55)

y(t) l
2irj

►

. (s + £-) [p^^SL-jco' L

s(t-T)e
-  (1 + j)][pl M s - -- (1 - j)]
SI /2

(56)

Equation (56) is evaluated in two parts (see Figure 11a). 
First, for a path of integration around the left half plane, 
corresponding to (t-T) > 0, y(t) is equal to the residue at s =
Secondly, for (t-T) < 0, y(t) is equal to minus the sum of the residues 
at poles (a) and (b) for a contour taken clockwise around the right 
half plane. The residue at -£^ is

Res(-e^)
-e^t-T)

1/2 2 . P ei + /2 p1/4 + 1
(57)

Taking the limit as ->■ 0 gives

y(t) = 1 For (t-T) > 0 (58)
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-- Im

(a)

(b)

Figure 11. a) Contour Integration of r(s)/A“(s) b) Inverse Fourier 
Transform of r(s)/A”(s)
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By evaluating the residues of the poles at (a) ?nd (b), Y(t) for 
(t - T) <0 becomes (see Figure 10b)

Y(t) = e(t-T)/T l[cos (— ■) - sin (-^) ] For (t-T) > 0 (59)

r ~ 1/4where T = /2 p
The function [T(s)/A (s)f+ may now be evaluated by taking the Laplace 
transform of y(t) as follows:

r ( s )

A"(s)+
Y(t)e Stdt

‘ 0

From Equations (59) and (60) we have

r ( s )

A“(s) +
(t-T)/rr ,t-T, e [cos(---) . /t-T,, -st sin(—— ) ] e dt + -ste dt

(60)

(61)

When the above integration is carried out and [T(s)/A (s)] + is 
divided by A+(s) (Equation (53)), the expression for the synthesized 
finite preview suspension transfer function W (s) is

P L — L o

W/s) p L-L
2,. 1/2 2 at. 1/4 , ,,s (A^p s - /2A2 P s + 1)

ps4 + 1
(62)

where e ^ T(cos T/t + sin T/t) 

e T T̂(cos T/t)
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The rms a c c e le r a t io n  and' c le a r a n c e  may be found from

Equation (62), and the relations indicated by Figure 10. Thus

..2 3/4y rms
1/4

2ttAV L = L
1
27Tj

■JOO-^2(A1̂ 2 - / z  A f l  + e ̂ T/P )
+ l) 2

1/4
( A ^ 2 + /2  A2ip +  e ,;T/P )

d^ (63)

When the numerator of the integrand in Equation (63) is reduced, 
there will be some terms of the form

^ne-i|;T/pl/ 4/(ip4 + l ) 2

By replacing i}> with -i[) and appropriately adjusting integration 
limits, Equation (63) becomes

..2 3/4
y rms
21TAV

tL=L

' J "  - A j V  -  + 2a/  + 2/2A2e'i'T/pl/V
2irj

r

( /  + D 2

d^

(64)

When Equation (64) is evaluated (see Appendix B), We 
have

. .2
y  pJ rms K

3/4
2ttAV L=L

= ̂  (Ax2 + 4Ax2T/t + 2A22 + 1) (65)
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In an entirely similar manner, the expression for the relative excursion 

is found as

- 3J  ( 3  + 3ax 2 - AA^T/ t + 6A22) (6 6)
L**Lo

The trade-off curves between rms acceleration and

clearance space (h = 2a6 ) are plotted in Figure 12 for severalp p ,rms
values of preview time (in seconds) along with curves for zero and

infinite preview [Equations (34) and (45) ].

The relationship between the benefits that may be

brought about by preview control and preview time are not apparent

from Figure 12. Consequently, let us pick a design point on the zero

preview line (h/2a/2irAV = 0.4, y //2irAV = 10.0) and determine how

y may be reduced for constant h and AV, how h may be reduced for 1 rms
constant y and AV, and how AV may be increased for constant yrms rms
and h. The results shown in Figure 13 Indicate that substantial 

reductions in vibrations and clearance space may be brought about by 

using preview control. For a given vibration and clearance space a 

vehicle using preview control may travel up to four times faster or over 

a road four times rougher (as measured by A) than one without preview.

D. Step Response

A great deal of insight into the nature of preview 

suspensions may be gained from the step response (y/x) plots of these 

systems. First, because of the analogy between the integral square and 

mean square of response variables subjected respectively to step inputs

p.rms
(2-rrAVp) 1/4
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2and random Inputs of the form AV/s (see Appendix C) 

a qualitative comparison may be made among systems which operate with 

various preview times. Furthermore, step response plots facilitate a 

physical interpretation of the capabilities of preview systems which 

function with less acceleration and less relative excursion than 

optimum non-preview suspensions. Finally, step response plots provide 

hints for the development of systems which might be easily mechanized 

and which perform nearly as well as optimum synthesized preview 

suspensions.

The response of vehicle position y to a step in roadway

elevation x is found from the definition of the inverse Fourier s
transform and the transfer function W^(s) [Equation (62) ] by noting 

that Y/X = W (s)/s2• Thus

ys (t) lim
e-KD

AjP1/4 2s - /I 1/4s + e-sT st, e . ds
-j£ (s + e) (pŝ  + 1)

(67)

When the integration in the above equation is carried out, the step 

response y (t) is found as
S

ys (t)
1 I t - T
2 2 t - T [ 1  - e

t-T
T ,t - T,, cos (— -— )]

1 (■ ■■■) t - T- j  e T ' [cos (-=-̂ — ) + 2 sin (t/T)cos(T/x)] (6 8)

Equation (6 8) is plotted in Figure 14 for several values of preview 

time T from the point of view of an observer at the vehicle. Thus, 

preview time is the distance from t/x = 0 to the beginning of the
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Figure 14. Synthesized Suspension Step Responses (y/x) for Several Values 
of Preview Time



_  i/Aresponse. The non-dimensionallzing parameter r ■ /2 p may be ' 

thought of as a scaling factor. For example, when acceleration is to 

be small, p, hence T, is large. Consequently, the step responses are 

more gradual than they would be if more importance were given to 

relative excursion.

Figure 14 shows how preview control improves both 

acceleration and relative excursion. Acceleration is proportional 

to the curvature (second derivative) of the plots in Figure 14 and 

relative excursion is proportional to the difference between the step 

and a response curve. The rms criterion weighs variables more heavily 

for. large values than for small. Consequently, the zero preview step 

response shows that a large initial relative displacement and curvature 

will contribute to considerable rms excursion and acceleration. As 

longer preview time is used, response curves become more gradual and 

result in smaller relative displacement as the vehicle body responds 

to a step in roadway elevation before actually reaching it.

E. Mechanization of Preview Control

Mechanization of the transfer function for the optimum 

preview suspension [Equation (62)] is not at all straightforward.

Since some of the poles of Equation (62) lie in the right half plane, 

the system response first diverges then converges as illustrated 

by the infinite preview step response in Figure 14. Consequently, the 

approach taken here is to examine the step responses in Figure 14 and 

devise systems with similar responses.

The equation for infinite preview [Equation (40)] is
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identical in form to that for an infinite beam on an elastic foundation [9 ]. 

(The static deflection equation for a beam on an elastic foundation 

may be derived by minimizing the weighted sum of the Integral of 

curvature squared plus deflection squared which is analagous to 

minimizing the weighted sum of rms acceleration plus relative excursion.) 

Consequently, one suspects that the steady state behavior of a very long 

train such as that proposed by Edwards [10] might approach that of an 

optimum preview system. However, this is a very restricted case.

Let us determine the capabilities of the general, but 

elementary,model of the preview suspension system illustrated 

schematically in Figure 15. The vehicle, Idealized as a rigid mass, is 

supported above the roadway by a suspension of stiffness*kv « The 

spring,,kg, represents a simple preview controller in which a force 

applied to the vehicle is proportional to the difference between the 

vehicle position, y, and elevation, x , of the roadway in front of the
S

vehicle. Damping is proportional to vehicle velocity as shown by a 

damper attached to an inertial reference. In practice this form of 

damping could be approximated by generating a suspension force 

proportional to the integral of the output of a vehicle-mounted 

accelerometer.

The position transfer function Y/X for the system shown

in Figure 15 is

k + k e s v
-sT

Ms + cs + k + k v s
(69)

Equation (69), rewritten in terms of nondimensional variables is
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-<J>to T
J- (s) - °
s <t> + 2 5 * + 1

(70)

where to = (k + k )/M, 5 “ c/2/(k + k )M, (j» = s/u) and "a" which n v s  v s  n
is a measure of distribution of stiffness between k and k isv s
k /(k + k ). From Equations (47) (with e ■ 0) and (70), the S V s X
expression for the rms vehicle acceleration is

..2
y rms <0

2ttAV 2irj
. i°° 2 2 ^ n ^-d> [ 1  - 2 a + 2a + a(l - a)e n 1 ..

~ 2  2 d<t> joo(* + 25* + 1) (*Z - 25* + 1)

to
2TTj

loo 2 "'KJ
3 -*'a(l - a)e n

-j' (<))2 + 2 5 * + 1 ) ( * 2 - 25* + 1 )
d* (71)

Equation (71) may be simplified by replacing * with -* in the second 

integral and appropriately adjusting limits of integration to give

rms w n
2ttAV 2irj

j‘

-j'

2 ^ n 1-
<t> [-1 + 2a ( 1  - a)(l - e n ) 
(*2 + 25* + 1)(<|>2 - 25* + 1)

d* (72)

When the above integral is evaluated (see Appendix D) , 

the expression for rms acceleration is

y2 to3 -5<o T
2^ " ^  1  + 2 a(l - a) [ - 1  + e (cos , _nA - 5 2 ii) T

A
--- sin A - £2 to T)]

1  - C
(73)
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The root mean square of the relative displacement of the
vehicle with respect to the roadway is given by

6p (s) - Xv (s) - Y(s) (74)

Thus, since X (s) * X (s)e v s

6_E
X (s)

_ -(ftw T
((ft + 2 £<ft + a)e_____ - a

<ft2 + 2£<ft + 1
(75)

From Equations (47) and (75), the expression for 6 is given byp ,rms ' ■ -

x2
5 _ a)p.rms n
2ttAV

1
2 irj

6 4+2 (a-2 C2)
o 7 (ftbli T (fto) T (ftu T
ft -2a<b c +4aC(fte +2a (1-e )

-jc ((JH-e^i ft2+2 ?<ft+l) (-<(rfe1) (cft2 -2 ?<ft+l)
d<ft

(76)

When the above integral is evaluated (see Appendix. D) , the

expression for 6 becomesr p,rms

ras 1  1 - 2(a - 2 ?2) - 2a2 (4? 2 - D  + 2a[l - a2irAV 4?o)

+ 4£ ( 1  + a)]e
-£o) Tn /---- 2cos A  - £ a) T + 2a£ (-1

+ r ( l  + a) - 3a]
-?u> T _____ _

6 ---- sin A - e2 0) T - ^  + a2T* n w n
^  XL- (77)
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The values of parameters a, £, and U)n , which optimize the

trade-off between vibration and clearance space,are found by minimizing

P ** py_ + 6 _ . The trade-off curves resulting from a digital computerrms p ,rms o r
parameter search (see Appendix A) are illustrated in 

Figure 15. These curves overlap the optimum synthesized trade-off 

curves shown in Figure 12 except near the infinite preview line. In 

this region the curves bend away from those corresponding to the 

synthesized suspension and terminate. At these end points a = 1.0 

indicating that the spring beneath the vehicle has zero stiffness. 

Consequently, the step response, from the point of view of an observer 

on the vehicle, is that of a simple spring-mass-damper system but 

advanced by a time T. The only way a smaller value of clearance may 

be obtained for this model is by having a relatively flexible preview 

controller spring (small k ) and a stiff suspension spring (large k ).
S V

This combination results in a system which allows small clearance space 

only at the expense of very high acceleration levels. The dotted 

curve for T = 0.5 seconds, shown in Figure 15, indicates this 

aspect quantitatively. It is difficult to imagine a situation in
s

which such a system would be desirable since better performance may be 

achieved with shorter preview times.

The presence of the discontinuity in trade-off curves is 

illustrated by a contour plot (Figure 16) of P as a function of "a" and 

for £ * 0.7, and T = 0.5. The minimum at a = 1.0 corresponds to the 

lower solid curve in Figure 15 whereas the minimum at a = .15 represents 

the higher dotted line. The large value for the natural frequency u)̂  

at the latter minimum explains the large acceleration levels found for 

the upper portion of the T = 0.5 seconds trade-off curve.
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Figure 16. Penalty Function Contour Plot for C = 0,7 and T ° 0,5 for Simple 
Preview Suspension '



V. NUMERICAL EXAMPLE

The preceding sections have presented rather general 

discussions of the optimization of the random vibration characteristics 

of vehicle suspensions. In order to illustrate the use of some of the 

suspension design charts (Figures 3, 8 , and 9), a numerical example will 

be considered. First, a preliminary design of a conventional spring- 

shock absorber suspension will be carried out with the aid of Figure 3 

for a high speed ground vehicle. Performance benefits that might be 

brought about by using automatic height control or synthesized 

suspensions will be examined. Figure 8 will be used to determine 

whether the suspensions thus far considered possess adequate road holding 

qualities. From Figure 9 we will establish a fundamental limitation to 

the primary design chart (Figure 3). Finally, the frequency responses, 

power spectral densities, and time responses to random roadway inputs 

will be found for several possible preliminary designs.

A. Use of Design Charts

The problem posed is to do a preliminary design study of a 

suspension system for a vehicle traveling 2 0 0 mph over a medium quality 

highway, A = 2 x 10 ^ ft. First, in order to establish a design 

vibration level, let us compute the rms acceleration of an automotive 

type of vehicle going 70 mph over the same highway. For £ = 0.5, 

r = 0.1, f = 10 Hz, and f =/ k...9/m  /2ir = 1.5 Hz the automobile sprung
U S a /

, 2 *mass vibration is about 5.5 ft/sec .

* Passengers would not feel this vibration level because seats filter 
much of the acceleration.
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Let us suppose' for the high speed vehicle that r = 0.1, 

f ■ 10 Hz, a is equal to 3 to insure that bottoming occurs very 

infrequently and that loading variations are equal to 75% of the 

weight of the sprung mass. From these data, the nondimensional 

loading variations are

y /4tt2/AVf 3 « 0.056 (78)Jrms u '

= F/8tt2(xM v^Vf 3-—  0.05 (79)

Thus, in Figure 3 Equation (78) is satisfied at point "a" on the 

= 0.05 line and

, (h/2ot) /fu/AV =9.0 (80)

Therefore, the design clearance is

h = 1.31 ft. (81)

The design chart also shows that, at the design point "a", the 

optimum parameter values are

C -  0.2

f = 1.0 Hz (82)

A 1.31 ft. suspension clearance seems rather large. If a low 

frequency automatic height control system were used to compensate for 

loading variations, F/k ■ 0 and the = 0 line applies. Point b in 

Figure 3 indicates that the suspension clearance would have to be only 

5.25 inches if the same vibration level were maintained. Point c shows 

that the minimum possible clearance space is about 4.1 inches for the
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optimum synthesized suspension. Thus,for this case an automatic height 

control suspension provides a suspension with nearly optimum performance 

If a 1.31 ft. suspension clearance is acceptable, then 

Figure 3 shows that active systems may be incorporated to reduce 

vibration and provide a more comfortable ride. Points d and e indicate 

that an automatic height controller and optimum synthesized suspension 

may reduce sprung mass vibration by factors of 3 and 7-1/2, respectively 

In this case, it appears that an optimum synthesized suspension offers 

a significant advantage over an automatic height controller which, 

in turn, is considerably more effective than a simple spring-shock 

absorber suspension.

Although the above discussion is valuable in comparing the

vibration-clearance aspects of several suspensions, we must investigate

further to determine whether the suspensions cited provide adequate

wheel-road contact. From Equation (12), the static unsprung mass

deflection is .09 ft. Since the rms relative wheel-roadway

excursion 6 should be at least three times smaller than 6 , the w o
maximum allowable value for 6 is .03 ft. Thusw

( 6 /f /AV) = 1. w u max (83)

The points a - e in Figure 10 correspond to those in Figure 3. Only 

three points, a , b , and c , fall below the 1.4 ordinate of 

Figure 6 . Hence the suspensions corresponding to these points provide 

adequate wheel-road contact; whereas those suspensions corresponding 

to points d and e are unacceptable due to large wheel-roadway excursions
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Figure 8 may be uaed to determine the minimum possible 

vibration isolation capabilities of a linear suspension which maintains 

nearly continuous wheel-roadway contact. The numerical value of the 

abscissa, using the above high speed vehicle parameters, is

3 - f AV u
2 = 0.0058 (84)g

From Figure 8 the minimum rms suspension force is

Frms____
(m + M)g 0.118 (85)

Since y = F /M, the minimum point on the ordinate of Figure 3 rms rms
becomes

yrms 0.043

u

Thus, the largest vibration reduction from points a, 

might be brought about is only 23%.

b, and c that

( 86)

B. Frequency Responses and Power Spectral Densities

Of the five optimum systems, a-e, originally considered 

only three, a, b, and c, met the road holding constraint. The 

vehicle acceleration, sprung mass-unsprung mass relative excursion and 

the unsprung mass-roadway relative excursion frequency responses and 

power spectral densities for these three designs, illustrated in 

Figure 17, show at least two significant factors. First, as may be
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seen by comparing frequency responses and power spectral densities
2for each variable, the 1 /to form of roadway elevation spectra causes 

considerably greater spectral content at the low frequency range than 

might be expected by merely inspecting frequency response plots. 

Secondly, active systems tend to attenuate or shift to higher 

frequencies the low frequency peak of the conventional spring-shock 

absorber suspension.
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Figure 17. Acceleration, Sprung Mass - Unsprung Mass Excursion, and 
Wheel — Roadway Excursion Frequency Responses and Power 
Spectral Densities Corresponding to Systems a, b, and c 
in Figure 6
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APPENDIX A
MINIMIZATION PROGRAM

C THIS PROGRAM, WRITTEN IN FORTRAN 4, IS USED TO MINIMIZE A FUNCTION OF 
C I VARIABLES B(I) USING A HILL CLIMBING TECHNIQUE. THE PROGRAM EVALUATES 
C A FUNCTION F IN THE MIDDLE OF A BOUNDED SECTION OF PARAMETER SPACE 
C THEN INCREMENTS EACH PARAMETER PLUS AND MINUS 10 PERCENT OF ITS MAXIMUM 
C RANGE, EVALUATING THE FUNCTION AT EACH STEP0 WHENEVER A VALUE OF THE 
C FUNCTION IS FOUND THAT IS LESS THAN THE STARTING VALUE, FO, THE PROGRAM 
C CONTINUES FROM THE NEW POINT„ WHEN A POINT IN PARAMETER SPACE IS 
C REACHED SUCH THAT THE FUNCTION VALUE CORRESPONDING TO THAT POINT IS 
C LESS THAN THE VALUES OF THE FUNCTION CORRESPONDING TO THE POINTS 
C DETERMINED BY PLUS AND MINUS INCREMENTS OF EACH PARAMETER THE INCREMENT 
C OR JUMP SIZE IS REDUCED BY A FACTOR OF TEN AND THE SEARCH PROCESS IS 
C CONTINUED. THE PROGRAM GIVEN HERE IS FOR THREE PARAMETERS AND EIGHT 
C ITERATIONSo HOWEVER, IT MAY BE EASILY CHANGED FOR OTHER NUMBERS OF 
C PARAMETERS AND ITERATIONS. THE BOUNDS ON THE PARAMETER SPACE ARE 
C GIVEN BY A(J) » BMAX(J), C(J) - BMIN(J). THE SUBROUTINE SHOOT IS FOR 
C THE FIXED CONFIGURATION PREVIEW CONTROL OPTIMIZATION.

DIMENSION D(3),B(3),C(3),BO(3),DLB(3),A<3)
COMMON DELRMS,ACCEL,RHO,T
READ(5,2) A(l),A(2),A(3) ,C(1),C(2),C(3)

2 FORMAT(7F10.5)
3 READ(5,5)T,RHO
5 FORMAT(2F15 o 8) 

WRITE(6 ,200)
2 0 0 FORMAT(104H1 T RKO A1 NATL FRQ (W) DA

IMP RATIO (Z) DELTA RMS ACCEL RMS FO /)
SET UP INITIAL VALUES OF B(I), JUMP SIZE DLB(J), AND PARAMETER 
D(J) WHICH IS 'USED TO INDICATE WHEN ALL VARIABLES ARE WITHIN ONE
JUMP OF THE OPTIMUM 
DO 6 J=l,3
DL3(J) = 0.1*(A(J)-C(J))
B(J) =0.5*(A(J)+C(J))

6 CONTINUE 
CALL SHOOT(F,B)
FO = F
INITIAL VALUES ARE SET UP. NOW GO THROUGH 8 ITERATIONS TO FIND 
OPTIMUM B(I),F

7 DO 95 L - 1,8
8 DO 70 I « 1,3 

D(I) - 0.0 
30(1) =■ B(I)

10 B(I) = 30(1) + DLB(I)
C KEEP B(I) WITHIN SPECIFIED RANGE

IF(B(I)-A(I))15,12,12 
12 B(I) - A(I)
15 CALL SHOOT(F,B)
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IF(F-FO) 50 s 20 j, 20
20 B(I) - B0(I)-DLB(I) .

C KEEP B(I) WITHIN SPECIFIED RANGE
21 IF(B(I)-C(I))22b22,25
2 2 B(l) »'c(I)
25 CALL SH00T(?sB)

IF(F-FO) 50 D40 840 .
40 B(I) » B0(I)

IF PROGRAM REACHES HERE THEN B(I) IS A LOCAL MINIMUM. IF THIS 
HAPPENS FOR ALL B(I) THEN B(I) IS WITHIN ONE JUMP OF THE OPTIMUM 
LET D(I)«1» RETAIN OLD VALUE OF FO (SKIP OVER F0-F)
D(I) - 1,
GO TO 70 

.50 CONTINUE
WE HAVE A NEW VALUE OF B(I) AND.. F. NOW SEARCH IN ANOTHER DIRECTION 
FROM THIS NEW POINT IN PARAMETER (B) SPACE 
FO = F '' '

70' CONTINUE * '
SUMD = D(l) + D(2) + D(3)
WRITE PARAMETERS s ETC AFTER ALL PARAMETERS HAVE BEEN EXAMINED ONE , 

..■JUMP IN EACH DIRECTION
WRITE(65100)T8RH08B(1),B(2)9B(3)8DELRMSsACCELbF0

100. FORMAT(8F13.7)
IF ALL B(I) ARE WITHIN ONE JUMP OF OPTIMUM THEN REDUCE JUMP SIZE, , 
IF(SUMD-2.5)8B80B80 

80 DO 90 14=1*3 
90 DLB(K) = 0 o1*DLB(K)
95 CONTINUE

GO TO 3 . ..
END

SUBROUTINE SHOOT(F0B)
ACCEL - RMS ACCELERATION/SQRT(2*PI*AV)
DELRMS = DELTA RMS/SQRT(2*PI*AV)
B(1)=ASUB1b B(2)“W(NATL FREQ) 9 B(3)=Z(DAMPING RATIO)
DIMENSION B(3)

• COMMON DELRMSBACCEL8RHO9T 
S = SQRT(I. - B(3)**2)
ACCEL-SQRT((B(2)**3*(B(1)**2 + ((10-B(1))**2) + 2.*B(1)*(1„-B(1))*
1(EXP(-B(3)*B(2)*T))*
2 (COS(S*B(2)*T) - (B(3)/S)*SIN(S*B(2)*T))))/(4„*B(3)))
DELRMS =SQRT(((1. - 20*(B(1) - 2.*(B(3)**2)) - 2.*(B(1)**2)*(4.*(B 
1(3)**2)- I.) '+'2>B(1)*(1d - B(l) + 4.*(B(3)**2)*(1o +B(1)))*(EX 
2P(-B(3)*B(2)*T))*COS(S*B(2)*T)+ 2o*B(l)*B(3)*(-lo+4„*(B(3)**2)*(l0 
3+ B(D) - 3c*B(l))*(EXP(-B(3)*B(2)*T))*(SIN(S*B(2)*T))/S)/(4.*B(3) 
4*B(2))) - 20*B(1)*B(3)/B(2) + (B(1)**2)*T)
F - RHO*ACCEL + DELRMS
RETURN
END
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EVALUATION OF INTEGRAL
APPENDIX B

Evaluation of I
n x
<j> e_____
(<^+l) 2

d<j>

When the denominator of above equation for I is factored, I 

may be written as

I
n <jn/2* x------ 4L_£--------------r- H

(*+ iti)2(d>+ i=i)2(̂ - I±i)2(<j>- I=i) 2sr  /r  sr  sr
(B.l)

The integration indicated by Equation (Bd) is carried out by evaluating 

the residues of the four poles that lie in the contour taken around the 

left half plane. Thus

8es[(-l+J)/>T] ** ±-d<t>
n <jn/2" x <j>- e

(<j) + ^^•)(4>2 -  Sz <J>+1)2
J T -l+i

f~T

(Bo 2)

When Equation (B.2) is evaluated, we find

n- 1  (-l+j)x
Res [ (-1+j) /^2] ° e [x-j(n-x-3)]

16 S2
(Bo 3)

Similarly

ResU-l-j)/^] «=> i—  (I 1  ~,1)n 1  e^ [x+j(n-x-3)] (B.4)
1 6 S?

Since I ■ Res [(-1+j)/^2] + Res [(-1-j)//F] , Equations (B»3) and (b .A) 

may be combined to give a general expression for I as
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(B.5)

where the coefficients A and B are given in the following table for values 

of n from 0 through 8 .

I - ~  e"X [A cos x + B sin x]j 16. , .. '

n A B

0 3/2 -/2(3+2x)

1 2x -2 (2+x)

2 -/2”(l-2x) / 2

3 2x 2x

4 /2 ✓T(1 -2 x )

5 -2x -2 (2-x)

6 -/2(3-2x) 3/2 :

7 2(4-x) -2x

8 -5/2 -5/2



ANALOGY BETWEEN DETERMINISTIC AND RANDOM PROCESSES

APPENDIX c

M i l H(s)

Y(s) - H(s)X(s)

Deterministic

Parsevals theorem:
CO J  00

j* y 2 (t)dt- Y(s)Y(-s)ds
. CO —  j  00

For the above system

j

2*jy 2 (t)dt=^Lj H(s)H(-s)X(s)

X(-s)ds

For X(s) ■'a/s

Random

The mean squared value of y may be 
given by

zi _
2ir 2 irj

J*
—r f H(s)H(-s)$ (s)dsirj J v xx

For G> (s) - - AV/s2
XX

y2
2ttAV

j-
.  -L - f H liIM slds2irj J s -s 

-j

Therefore

-i- f y2 (t)dt - 
a2

y2
2 ttAV
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EVALUATION OF INTEGRAL
j®

APPENDIX D

... ,n <J>x<j> eT-lim f
Evaluation I “ e-K) I ..

of J (4>+e) (<j>2+ 2 ?<{>+l) (-<(>+e) (4>2+ 2 C(fp+l)
. “J"

d<J>

The above integral may be evaluated by summing the residues of 

the three poles that lie within a contour taken around the left half 

plane. Thus -

I - Res (-e) + Res (-C+j^l-E"2) + Res (-5-j/L-C^) (D.l)

The residue at -e is given by

Res (-e)
n -ex 

( -e )  e 
2 e

In the expression for 6^ (Equation (76)) the numerator of one
d>xof the terms is of the form 1 - e . For this case

Res(-e)i_e^x l x

The residues at the poles <|> - -s * j A - C 2 are

(D.2)

(D.3)

--- ----u—  n- 2  (-5+jVl-C2 x)Re5<-C+j«T^) ■ ) « ---------
8c[i-c2+ j ? A ^ F  ]

(D.4)

____  , ,---r n- 2  ( -c - jA -e 2 x)
Res ( -5 - j A - ; 2) -  ( -C -jA -g 2) e ________ !___

8£[l-e2-KA-C2 ]
Thus I may be given in the following general form where the coeffi

cients A, B, and C are listed below for several values of n:

(D.5)

I - *-ex

4e(i-c2)
[A cos A - ? 2 + B sin A - ? 2 x] + C (D.6 )
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n A B c

0 (4c2-1)(1-c2) -5/l-cr (3-4?2) See Equation (D.3)

1 -2 C(1 -C2) ✓l-C2 (l-2 c2) - 1 / 2

2 (1 -C2) c/m ? 0

4 - U - C 2) c/i-c2 0
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